A Novel Multiple Attribute Decision Making Framework based on Hamacher Operations in Patron Driven Acquisitions Mode of Library Management

نویسندگان

  • Jiao Li
  • Dong Hu
  • Chao Tang
  • Jufang Xie
چکیده

As a fuzzy set extension, the hesitant set is effectively used to model situations where it is allowable to determine several possible membership degrees of an element to a set due to the ambiguity between different values. Some new hesitant fuzzy operational rules are introduced based on the Hamacher t-conorm and t-norm, whereby we present a multi attribute decision making method under hesitant fuzzy information. In the daily management of library, book selection problem usually is very complex and unstructured, because variety of uncontrollable and unpredictable factors affects the evaluation and decision-making process at different levels. By integrating the multiple attribute decision making method with (Patron Driven Acquisitions, PDA) mode, a novel multiple attribute decision making framework based on Hamacher operations in PDA mode is proposed to select the best book providing the highest satisfaction for the attributes determined in this paper. Finally, a case study is so demonstrated to verify the reliability and applicability of the proposed framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach

For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

A New Balancing and Ranking Method based on Hesitant Fuzzy Sets for Solving Decision-making Problems under Uncertainty

The purpose of this paper is to extend a new balancing and ranking method to handle uncertainty for a multiple attribute analysis under a hesitant fuzzy environment. The presented hesitant fuzzy balancing and ranking (HF-BR) method does not require attributes’ weights through the process of multiple attribute decision making (MADM) under hesitant conditions. For the rating of possible alternati...

متن کامل

Horizontal representation of a hesitant fuzzy set and its application to multiple attribute decision making

The main aim of this paper is to present a novel method for ranking hesitant fuzzy sets (HFSs) based on transforming HFSs into fuzzy sets (FSs). The idea behind the method is an interesting HFS decomposition which is referred here to as the horizontal representation in the current study. To show the validity of the proposed ranking method, we apply it to solve a multi-attribute decision-making ...

متن کامل

Multiple attribute group decision making with linguistic variables and complete unknown weight information

Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016